
Accelerating Application Refactoring
A Practical Guide

Philippe Guerin, Senior Software Architect, CAST

The Trouble with Application Refactoring
“Why is it taking so long?”
“Do we really need a 20-person team on this?”
“Why is the changed system misbehaving?”

We’re all faced with questions like these from our business stakeholders and leadership. They know our
systems are complex, but have little appreciation for what that means, nor patience or funding for us to
modernize. Not to mention the years of cost savings and turnover that deplete the collective knowledge
of our legacy software. We know we must refactor some of our core systems in order to keep up with
“digital.” But, there’s no pleasure in having to resort to trial-and-error methods, software archeology
taking costly wrong turns, and at times unwittingly introducing production defects.

In this guide we share how the essential activities of application refactoring can be significantly
accelerated by applying Software Intelligence. We, at CAST, have a long history with application
modernization and refactoring, so as a first point we establish the typical refactoring approaches we see
enterprises take. In these approaches, we've found a set of common motions, which are typical activities
undertaken to refactor applications. We then explore these motions in some detail, how they are
typically undertaken today, and how to accelerate them.

CAST is the company behind the world’s most advanced 'MRI for Software’, which essentially reverse
engineers and automatically ‘understands’ software systems built with any mix of 3GL, 4GL, Mobile,
Web, Middleware, Framework, Database, Mainframe technologies. Throughout this document, we use
examples from CAST Imaging, our interactive architecture visualization capability, to illustrate the
accelerated refactoring motions.

Not all Refactoring Approaches Are the Same
Probably the most common reason to refactor is to make the application more modular and hence
easier to change. Another common reason is to take advantage of new capabilities available, either as
frameworks or PaaS services from the major cloud providers. And of course, refactoring is sometimes
undertaken to fix specific issues, or to reduce maintenance overhead or to beef up the security posture
of an application.

Whatever the case, refactoring by its very nature is driven by non-functional aspirations. Even if the end
goal is to deliver higher levels of functionality more quickly and robustly. The extent of refactoring will
depend on the level of disruption an enterprise or the IT organization is willing to tolerate. Among all

Accelerating Application Refactoring – A Practical Guide P a g e | 2

Copyright 2020, CAST Corporation

existing motivations to refactor thus far, we’ve seen
several refactoring archetypes. Below, we describe these
common approaches to refactoring, and explain some of
the typical activities, or “motions”, each of these
approaches entails.

So, let’s start with the refactoring approaches.

Do Nothing
With all the talk about modernization and cloud, it would
seem this is not really an approach. Yet, in our
experience, this is the most common refactoring
approach taken by most enterprises today. Remember,
we’re talking about application refactoring here.
Wrapping an application up and moving the virtual
machine to the public cloud is precisely a “do nothing”
approach. If you are accustomed to your enterprise
system and are generally satisfied with its performance,
you may choose not to make any enhancements.
However, this can still be a missed opportunity to gain a
competitive edge in the long run. This approach does not
require any specific application refactoring motions.

The Band Aid
As the name suggests, this approach consists of focusing on problem areas and implementing stopgaps
to get the system working in new ways. This approach is also sometimes taken to opportunistically apply
modern technology to legacy systems—melding the old and the new to improve the organization’s
performance and productivity. These quick fixes are usually low risk as they’re surgical and simply put an
end to specific issues. But, if not implemented with a good sense of impact on the integration points to
the rest of the existing system, the approach could lead to unresponsive components. Typically, work is
done at the boundaries of the legacy system because the team doesn’t control or even understand the
core system. Some examples of motions that take place in this approach are:

• Framework replacement or insertion
• Rewriting a vulnerable component
• Putting in a DAO (data access object)
• Adding a wrapper to a legacy component

Gradual Replacement
Wholesale application modernization doesn’t need to be done overnight. Some organizations take a
planned approach to upgrade legacy systems one piece at a time, perhaps leveraging an open source UI
component to enhance the user experience or a database access framework to improve
performance. The benefit of this approach is that you can quickly model future state by using off the
shelf components to determine what works and what doesn’t. No need to overhaul the entire system

Accelerating Application Refactoring – A Practical Guide P a g e | 3

Copyright 2020, CAST Corporation

when only certain elements need to be optimized. You can break the system into zones or portions—an
advantage for those who want to test the waters when it comes to legacy system enhancements.
However, having too many components and integrations may create compatibility and complexity
issues. Some examples of motions that take place in this approach are:

• Functional decomposition of existing system
• Review of the “as-is” architecture
• Plan the “go-to” architecture
• Identify candidates for componentization
• Remove, replace or add a framework

Rip and Replace
For this approach, transformation is the bottom line. To take this approach there is usually a somewhat
urgent need to retire the legacy system and rebuild a new one. Rip and replace is a complete overhaul,
which may be very risky from a business stakeholder perspective. This is an aggressive approach to
extend your organization’s competitive edge. Although the solution is “high risk, high reward”, the
major changes may create organizational adoption challenges for teams that are accustomed to their
legacy processes. Some examples of motions that take place in this approach are:

• Review of the “as-is” architecture
• Plan the “go-to” architecture
• Rewrite or add a module, features or a component

Continuous Refinement
This is the ideal refactoring cadence that should be the eventual end state for all critical applications.
You can think of it as maintenance refactoring. When in this mode, the organization knows the
application well, there isn’t a need to make drastic changes, and the team is comfortable making minor
adjustments. These include cleaning, consolidating, and updating code. The system is in a healthy state
and merely undergoes modernization to remove problem areas and inefficiencies, or to adjust to
performance requirements. There is no urgency, and most changes are highly proactive. This is ideal for
organizations whose existing IT systems serve their purpose well. The only danger of this approach is to
fall too far behind the curve of the tech landscape, finding it hard to get qualified resources to support
and update legacy systems in the future. Some examples of motions that take place in this approach are:

• Code clean up and bug fixing
• Rewrite, expose or add a component
• Replace a framework
• Optimize transactions

Successful refactoring is part art and part process. Because in many cases you don’t know what you
don’t know about your existing systems, refactoring projects are hard to predict and force into a specific
process. In the next section we deconstruct the typical refactoring motions and explain how we can
make them more procedural, predictable and efficient.

Accelerating Application Refactoring – A Practical Guide P a g e | 4

Copyright 2020, CAST Corporation

Common Motions – Summarized
Whether it’s a full rewrite of a legacy system or a move to public cloud, some activities are common to
most types of refactoring projects. We want to distill these common refactoring motions – the typical
activities that one has to do when refactoring a large, complex codebase. There are probably many ways
to describe the typical activities that take place in modernization or refactoring projects. In our
experience, these common motions broadly fall into two categories. Analysis, that is to understand the
current state or plan the future state, and Action, which is to actually do the refactoring in the
codebase.

Analysis Motions
1. Review the “as-is” architecture – Discovery of the “as-is” architecture of the system in order to
understand the overall design as it’s been implemented in the existing application. That review can lead
to both technical and functional discovery of the system and it naturally precedes most of the other
refactoring motions.

2. Plan the “go-to” architecture – A new architecture should be defined explicitly enough that
developers can follow along, and architects can check compliance of implementation. If components are
targeted for replacement, all connections to those components can be tracked and goals set for
achieving “zero connections”.

3. Identify candidates for componentization – This entails looking at the existing software architecture
to see where a functional component can be turned into a microservice or a better separation of
concerns can be introduced.

4. Identify obsolescence or vulnerabilities – this involves analysis of frameworks and third party or open
source components to determine where the most urgent risks are.

Action Motions
5. Decouple a community of components – this can take many forms and is often linked to isolating a
service, an API, a transaction or a whole layer.

6. Rewrite, expose or add a component – Whether it’s for vulnerability, or to update the functionality
and business rules, a component-wise approach to refactoring often makes sense.

7. Insert a framework – A new framework can be useful for common functionality – better tested,
easier to maintain and more future-ready than building your own.

These are not representative of all the motions that take place in application refactoring. Just the most
common we’ve seen in many years working on modernization with enterprise IT applications teams.

Accelerating Application Refactoring – A Practical Guide P a g e | 5

Copyright 2020, CAST Corporation

Common Motions – Explored
In this section we look at each of these motions in more detail, exposing the challenges in each one and
explaining how each motion can be expedited through machine-assisted Software Intelligence. For each
motion we describe the current status quo – that is the typical approach you might take, and what that
approach looks like with Software Intelligence. These approaches are placed side-by-side, so we can
easily compare.

Motion 1: Review the “as-is” architecture
Most of the time the existing system
architecture is unknown. Even if there is some
documentation, it’s either not detailed
enough or has fallen behind the implemented
reality. Almost always the real “as-is”
architecture in practice is not the same as
what you might think. This motion is usually a
starting point for most of the Action motions,
like decoupling components, or even for just
planning the new architecture. Hence, you
will see reference to this motion built into most of the remaining motions we describe in this section.

Figure 1 - Architecture document vs. the real “as-is” architecture

Architecture exploration is a part of all the motions described below. It’s part of any work done in the
context of large systems. This is probably the most pervasive motion in all application development and
especially in maintenance. It is a necessity when doing any kind of refactoring of an existing system.

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.pinterest.ca%2Fpin%2F129267451781223496%2F&psig=AOvVaw0fhAX1zY-pyk5HN4Ubb9dC&ust=1585856390855000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCLDmoI7_x-gCFQAAAAAdAAAAABAK

Accelerating Application Refactoring – A Practical Guide P a g e | 6

Copyright 2020, CAST Corporation

Status Quo

The typical process of discovery is to start with
one component, usually at the data end or the
UX end of the chain, and then see where it leads.
One would not discover the entire system, just
the paths through it that are needed for the
specific refactoring motion. Assuming bi-weekly
sprints of 4-5 features each, each sprint is likely
to require a week of “as-is” architecture
exploration effort for senior developers.
Sometimes several developers, if the application
spans multiple tech stacks. It is not atypical to
have to explore as many as 1000 components in
the context of one refactoring project.

Matter of weeks.

With Software Intelligence

This becomes an entirely different approach,
because the technical staff have access to the full
map of the system. They can navigate to the
impacted components for a refactoring project,
or just navigate the architecture to understand
how to better maintain portions of the system.
The Software Intelligence would be available as a
set of blueprints that can be quickly navigated
and change impacts quickly explored. Rather than
weeks, the process would take an hour or two to
examine the same scope of around 1000
components.

Matter of hours.

Motion 2: Plan the “go-to” architecture
Unless building something completely greenfield, an architectural diagram should always include
existing components, as no system is built in isolation. Typically, this planning process is a step in one of
the other, more action-oriented motions of refactoring. For example, as we see in Figure 4, as it relates

to identifying
obsolete
components,
we have a
step at
examining
the current
architecture,
followed by
planning the
“go-to”
architecture.

A common
approach to
building
modern
systems is
establishing
a separation
of concerns.
The idea
being that Figure 2 - Designing the “to-be” architecture and monitoring compliance to the design

Accelerating Application Refactoring – A Practical Guide P a g e | 7

Copyright 2020, CAST Corporation

each type of activity (user interface, business logic, data handling) is handled by a specific layer. This
helps to modularize and isolate components of a system, creating layers of abstraction and making it
more flexible to change. Those layers can be defined in the “go-to” architecture and checked for
compliance. This is typically an exercise that involves multiple software architects to bring together an
understanding of existing system architecture.

Like others, this motion starts with an understanding of the current architecture, but then gets into
understanding the potential “to-be” scenarios and then sorting through these scenarios to agree on the
best plan. Also, best in class teams build in a method to ensure the new architecture actually gets
implemented by the development teams.

Status Quo

A cabal of architects, likely representing different
parts of the system, work together over a period
of many weeks to formulate a visual description
of a system that can be analyzed. Then a
theoretical “to-be” architecture is drawn up and
eventually agreed upon by the senior architects.
That theoretical description looks something like
the diagram on the left side of Figure 1. It is not
connected to the current “as-is” architecture, so
as the team implements it’s possible they will run
into some unknowns that will derail or delay the
project. Also, during implementation the only
way to check adherence to the new design is to
keep a member of the architecture cabal
allocated as a member of each dev team at least
half time. This allows the designers to get
something like direct oversight over
implementation.

Months of planning.
Man-years of implementation oversight.

With Software Intelligence

The same team of architects as in the status quo
scenario will start with the “as-is” architecture as
described in Motion 1. They look at different
solution scenarios in the context of the “as-is”
and trade off the ideal solution against the reality
of getting there from the “as-is” state. Once a
good compromise is found – the optimal tradeoff
– then the “to-be” plan is drawn, as seen in
Figure 2. The blue boxes in this figure represent
the separation of concerns, codified as an
architecture check in the Software Intelligence
platform. These checks are looked at periodically,
perhaps with each sprint, for compliance and
progress. That is to make sure no new constructs
are written that go against the “to-be” state and
progress is made to rewrite constructs that
currently go against the “to-be” architecture.

Days or weeks of planning.
Man-days of implementation oversight.

Motion 3: Identify candidates for componentization
The challenge is to look at all the interconnections between components to see where you might have
good break points to cluster components. Typically, this is the common motion behind establishing a
new microservice within or next to the legacy system. Usually the legacy is a big ball of COBOL or even
Java, that has proven to work well over time, housing complex and well-tested business rules, and does
not need to be discarded any time in the near future.

Accelerating Application Refactoring – A Practical Guide P a g e | 8

Copyright 2020, CAST Corporation

The process here is typically to
identify a cluster of components in
a specific functional area, which
can be “cordoned off” into a new
layer, API or microservice. Then
the impacts of that change need to
be assessed and the project can
then be estimated and
implemented.

The team will typically start with a
functional entry point and explore
all the components going down the
chain of that function. Then look at
all the related areas and figure out
which components need to also be
reviewed to either include inside
the new microservice, or to be
interfaced to it from the outside.
Once the microservice is zoned off,
an impact analysis project is
undertaken to understand what
else is dependent on that
component.

Status Quo

The bulk of the exploration will be manual,
having to jump through all related components
by using a combination of grep and reading code.
This will be a multi-week activity. The scope of
work is unpredictable, and the effort is hard to
estimate. There is a risk that some components
are left out once testing begins, thus causing
issues in live use or extending the project length.
Depending on the level to which separation of
concerns already exists, this exercise may be
more involved. With vertical concerns separated,
that is layers, this exercise is limited to just a
layer at a time. With horizontal separation of
concerns also implemented, the scope of
exploration will be smaller.

Weeks of exploration.
High risk of leaving out components.

With Software Intelligence

The team will look at the visuals of the system to
examine the functional component and all of its
interconnections within the first couple hours of
the project. As shown in Figure 3, the
components that require the least work to
repackage can be selected and modeled as if they
were all part of one component, such as an API
or a microservice. This modeling exercise should
be just drag-and-drop, so in a matter of hours the
team can model many alternative scenarios and
make an informed tradeoff about draw the
functional boundaries of the new microservice.

Hours of exploration.
Negligible risk of leaving out components.

Figure 3 - The highlighted components that can be combined into a separate entity

Accelerating Application Refactoring – A Practical Guide P a g e | 9

Copyright 2020, CAST Corporation

Motion 4: Identify obsolescence or vulnerabilities
In a system with thousands of components, many of which are already taken from open source, it’s
important to keep on top of versions and known vulnerabilities. Older versions of OSS components
typically have more known vulnerabilities and can become completely obsolete. Staying on top of this
can be an enormous task, and there are a number of tools in the Software Composition Analysis (SCA)
space that can help. Once the obsolete components are identified, they need to be replaced or the
architecture needs to be altered in order to do without them. Motion 6 discusses replacing or rewriting
a component and Motion 7 explains the process of inserting a new framework.

Figure 4 – Results of search for obsolete components

This motion starts with the output from the SCA tool, identifying the components or frameworks that
are affected. Then the real work of assessing the impact and workload of these changes begins.

Status Quo

Once the list of identified frameworks is dumped
out of the SCA solution, a developer is assigned
the task of finding that component in the code
and figuring out what can be done to remedy the
situation. Usually, the developers assigned to this
task will be using a combination of grep searches
and walking through code to see where the
frameworks or components need to be replaced.
This will be a couple weeks of work, and then the
set of activities in Motion 6 will take over.

Matter of weeks.
Low certainty of prioritization.

With Software Intelligence

The team will run a quick search on the identified
components, and how these components look in
the context of the “as-is” architecture. The
definitive list is analyzed, with an automated
impact analysis to be able to estimate the
approximate time to replace each component.
Then the list of obsolete or vulnerable
components can be prioritized based on risk vs.
effort to create an action plan. Overall, this
should be about a half day of work, before actual
implementation, as described in Motion 6.

Matter of hours.
High certainty of prioritization.

Accelerating Application Refactoring – A Practical Guide P a g e | 10

Copyright 2020, CAST Corporation

Motion 5: Decouple a community of components
There are many types of decoupling that could take place in refactoring an application. It could just be
one small component, a microservice, an API or a whole layer. In either case, the first step is to see how
that decoupling will look in the context of the surrounding components. The main action is to first
identify the community of components and identify the various points of liaison this community has
with the rest of the system. These liaisons can be replaced with ones that have a low level of coupling,
such as an API or an HTTP call, thus removing all strong liaisons, such as a direct object instantiation for
example.

If we take the example of decoupling the front-end interface from the back-end business processes and
data – a common motion that we see in reorganizing legacy systems, there are several steps that one
must take:

First you need to understand what those layers look like today. What is the level of cohesion? How
many components are involved? What are their touchpoints that will have to be altered?
Then you need to look at which of those components need to be decoupled. A set of components will
comprise the new Front End layer design. There will be another layer of components to form the
interface to all other services/components in the application. And then you implement the desired
changes. In the example we’re using, as you can see in Figure 5, some of the changes might be a rewrite
of a UI component or use of a different local storage facility in combination with a microservice.

The key is to have visibility into the multiple dependencies that can affect a decoupling effort.
Using a software intelligence capability to visualize these dependencies can speed up the effort
significantly.

Figure 5 - The steps in decoupling the Front End of an application

Accelerating Application Refactoring – A Practical Guide P a g e | 11

Copyright 2020, CAST Corporation

Status Quo

Depending on the scope of the de-coupling, the
paths through the system that would need to be
discovered could range from just several to
dozens. The discovery process described in the
Motion 1 section can therefore span hundreds of
components and take several man-weeks. Once
an understanding of the system is established,
depending on the end-state architecture, the
team may have to do some more discovery to
complete an impact analysis. Sometimes up to
30-50% of the effort can be wasted trying to
understand impact of decoupling changes and
component dependencies. And, due to the
unknown unknowns, the project timeline can be
off by 25-30% or more.

Weeks of planning.
Low accuracy project estimates.

With Software Intelligence

The team isolates the components that are being
decoupled and studies the visuals that show the
impacts across various components and layers.
Those impacts are enumerated quickly, so the
team can size the effort and assign appropriate
resources. The whole process should take a half
day or so, and the ensuing implementation
project timeline should be 95% accurate. This
motion is perhaps the one that takes the biggest
advantage of Software Intelligence capabilities.

Days of planning.
High accuracy project estimates.

Motion 6: Rewrite, expose or add a component
If a component has even minor
changes, or a new component
needs to be added to the
system, all the upstream and
downstream components may
be affected and need to be
checked. Of course, testing is
part of that process, but even
in planning the change it’s
necessary to visualize how the
change will propagate through
the system.

Aside from the coding of the
new component, most of the
upfront effort here is in the
impact analysis to understand
what else needs to be
rewritten outside the affected
component.

 Figure 6 - Looking at the impact propagation of one system component

Accelerating Application Refactoring – A Practical Guide P a g e | 12

Copyright 2020, CAST Corporation

Status Quo

Since the focus is on one component, typically
the developer will start with that component, do
some grep searches to see where this component
is referenced, and look inside the component to
see what happens downstream. If it’s a new
component, it’s a similar process. This is not as
involved as Motion 5, where a whole layer is
impacted, but still takes time. Surveys estimate
that the impact analysis is around 60% of the
work effort of modifying or creating a component
in the context of an existing system.

Weeks of analysis.

With Software Intelligence

The team looks at the component and all
upstream and downstream elements, as shown in
Figure 6. Since the impact assessment is relatively
instantaneous, the software intelligence can be
used in the planning and prioritization process to
estimate effort upfront with relative accuracy.

Hours of analysis.

Motion 7: Insert a framework
Like component replacement, but more
significant in its impact, a new
framework must be checked for impact
across all the components it interfaces
with. First to see how that framework
can replace existing components and
then, based on the capabilities of the
framework, whether there are
opportunities presently or at a later
time to take advantage of those new
capabilities. Then, to see where in the
rest of the application will be impacted
once the framework is removed or
replaced with a new version.

Replacing a framework is more complex
than just one component. First the
components currently doing the job
need to all be identified. Then, all their
interactions amongst themselves and
their ecosystem.

 Figure 7 - Exploring an obsolete framework and its surrounding

components

Accelerating Application Refactoring – A Practical Guide P a g e | 13

Copyright 2020, CAST Corporation

Status Quo

This, like in many of the other motions described
here, can be a time-intensive, trial and error
process of reading code, looking at configurations
and following links. Once the impact areas are
identified, the project can be planned and
executed. A lot of manual effort, with a high
degree of uncertainty. If additional capabilities
that come with the framework are also looked to
be used, then the team needs to identify which
components should be rewritten to take
advantage of those new capabilities.

Weeks of analysis.

With Software Intelligence

Within minutes the team can see all upstream
and downstream elements, as shown in Figure 7.
These views can be used in the planning and
prioritization process to estimate effort upfront
and make decisions about timing. Also, while
looking at the system components around the
new framework, with Software Intelligence this
becomes an opportunity to drive higher
compliance with the framework. Non-compliant
constructs can be flagged, enumerated and
tracked with the goal of reducing them over time.

Hours of analysis.

Practical Guidance – Building Your Refactoring Muscle
Anywhere application refactoring takes place, it is necessary to review the existing software, look at the
changes to that software and assess the impact of those changes on the rest of the codebase. Once a
system gets larger than 100 components, it becomes difficult, nigh impossible for any human being to
assess all the interactions to know where the risks are. Most modern revenue-carrying systems are in
the realm of 5,000 components or above. As we further componentize our systems into APIs and
microservices, those numbers will only increase.

Classical Agile methods have always called for one out of five or ten sprints to be refactoring sprints.
With modernization work all around us, and Agile becoming mainstream, the ability to refactor systems
is not a one-off challenge. It is a capability that organizations must develop and maintain. Refactoring is
an ongoing discipline at world-leading technology organizations. Turning that into a machine-assisted
capability by leveraging Software Intelligence is the only way to keep up with modern technology
demands of any enterprise.

Accelerating Application Refactoring – A Practical Guide P a g e | 14

Copyright 2020, CAST Corporation

About CAST Imaging
All the images presented in this document are from CAST Imaging, the world’s most advanced MRI for
software. CAST Imaging is based on award winning Application Intelligence Platform (AIP) technology,
the result of 20 years and $200 million in R&D. The AIP can analyze dozens of common programming
languages, scores of common frameworks, database structure, web services, and all configurations to
generate a complete end-to-end view of a software system. CAST Imaging turns that metadata into an
easily navigable view for architects, engineers and developers to see how their system really functions.
To find out more, or get a live demo, please contact CAST or visit www.castsoftware.com/Imaging.

About the Author
Philippe Guerin is a Senior Software Architect at CAST and leads the team of CAST
Solutions Architects. He is an expert in application modernization, architectural
design, and software intelligence. Over the last 10 years Philippe has been
helping businesses, government agencies, management consultancies, cloud
vendors and systems integrators assess large IT organizations application
landscapes and accelerate transformation efforts. You can contact Philippe
directly at p.guerin@castsoftware.com.

Sharing and Attribution
This document was copyrighted and placed in the public domain by CAST in May 2020. Its contents are
meant to distill CAST’s experience of helping businesses, governments, consultancies, and integrators
modernize complex, custom-build software applications. Anyone is welcome to distribute or republish
visuals or excerpts of this document, as long as the content is attributed to CAST.

http://www.castsoftware.com/Imaging
mailto:p.guerin@castsoftware.com

	The Trouble with Application Refactoring
	Not all Refactoring Approaches Are the Same
	Do Nothing
	The Band Aid
	Gradual Replacement
	Rip and Replace
	Continuous Refinement

	Common Motions – Summarized
	Analysis Motions
	Action Motions

	Common Motions – Explored
	Motion 1: Review the “as-is” architecture
	Motion 2: Plan the “go-to” architecture
	Motion 3: Identify candidates for componentization
	Motion 4: Identify obsolescence or vulnerabilities
	Motion 5: Decouple a community of components
	Motion 6: Rewrite, expose or add a component
	Motion 7: Insert a framework

	With Software Intelligence
	Status Quo
	With Software Intelligence
	With Software Intelligence
	With Software Intelligence
	With Software Intelligence
	With Software Intelligence
	With Software Intelligence
	Practical Guidance – Building Your Refactoring Muscle
	About CAST Imaging
	About the Author
	Sharing and Attribution

